EMS World

JUN 2013

EMS World Magazine is the most authoritative source in the world for clinical and educational material designed to improve the delivery of prehospital emergency medical care.

Issue link: https://emsworld.epubxp.com/i/131347

Contents of this Issue

Navigation

Page 42 of 69

PERFORMANCE BENCHMARKS Pain Management Pain is one of the most common reasons people seek medical attention. It is often undertreated by EMS, even though acute pain is associated with signifcant morbidity and mortality.20 Pain is described as "physiologically bad" in a 2008 Journal of Emergency Medicine article; it is "destructive to the body. Untreated, it damages the immune system, hinders wound healing, rewires the neurological system and can lead to chronic pain."21 According to a 2000 article in the Journal of the Royal Army Medical Corps, "The effective management of pain in the prehospital environment may be the most important contribution to the survival and well-being of a casualty that we can make. The prehospital practitioner has the frst and perhaps only opportunity to break the pain cascade."22 Even in systems with short transport times, patients often wait several hours in the hospital for relief they could have received before being moved. In a study of patients with extremity fractures who were medicated for pain, only 12% received it from EMS. When pain medication was administered by EMS, the average time from arrival to delivery was 23 minutes. The other 88% received pain medication an average of 75 minutes after arrival at the hospital.23 Another study of patients with leg or hip fractures showed 8% received pain medication from EMS and 91% received it in the emergency department. The patients whose pain was medicated by EMS in that study received it an average of two hours earlier than those frst medicated in the hospital.24 Paramedic administration of fentanyl has been shown to safely reduce pain.25 Morphine and nitrous oxide are also used in the prehospital setting. Analgesic medication is restricted to ALS units, but a BLS response is indicated for many patients in pain.18 Very few patients need EMS to save their life, but many can be helped to feel better. Most of our patients are in some type of pain. That pain is often made worse during movement to the ambulance and transport over bumpy roads, especially when strapped to a hard board. Many of these patients then get pain medication in the hospital, but wait more than an hour for it. Delays in the treatment of acute pain can lead to a longer recovery and chronic pain. Why isn't this a bigger priority for us? Knowing how detrimental untreated pain is and how safe chemicals are available to treat it, is there any excuse not to make them available for patients in pain? For any system to say it is patient-centered, at least one person should be capable of administering pain medication on every call. Detecting Life Threats Patients receive one-on-one care while they are with EMS. Diagnostic equipment is brought to their side, and vital sign trends can be monitored during transport. It is much different in the hospital, where each staff member is responsible for multiple patients and the sickest must be treated frst. Objective EMS assessment fndings in patients with vague symptoms can identify critical illnesses before patients decompensate, and move them ahead in line. Early critics of 12-lead ECGs argued they did not change the treatment rendered by EMS and thus were unnecessary. We now know that many patients have symptoms that may be caused by an acute coronary syndrome, but the few with STEMIs need immediate reperfusion. A similar approach is taken with identifying major trauma and stroke patients who need immediate treatment. Alerting hospitals allows them to prepare before those patients arrive. Early recognition and treatment of sepsis is an emerging role for EMS. Patients with severe sepsis often present with vague symptoms and stable vital signs, but 30%–35% of them die if not treated before shock symptoms develop. Early goal-directed therapy (EGDT) for sepsis reduces this mortality rate; it includes diagnosis by lactate measurement, aggressive fuid resuscitation and antibiotics.26 Emerging technology will allow even more life-threatening illnesses to be detected by EMS. Soon portable ultrasound machines may be used to diagnose internal bleeding, cardiac tamponade, pneumothorax and stroke.27 Point-of-care tests for electrolyte imbalances and cardiac enzymes may come to ambulances. Paramedics can use this information to make better treatment decisions, and hospitals can use it to better triage patients. The sickest ones beneft from our fnding this information long after we turn them over to the hospital. Appropriate Hospitals While shorter ALS response times have not been associated with improved patient outcomes, getting patients to the most appropriate facilities has.1, 28–30 In 2006 the Institute of Medicine called for regionalized, coordinated systems of care for high-risk medical patients. cont. on page 54 EMSWORLD.com | JUNE 2013 41

Articles in this issue

Links on this page

Archives of this issue

view archives of EMS World - JUN 2013