EMS World

DEC 2014

EMS World Magazine is the most authoritative source in the world for clinical and educational material designed to improve the delivery of prehospital emergency medical care.

Issue link: https://emsworld.epubxp.com/i/418470

Contents of this Issue

Navigation

Page 6 of 99

Indications and Usage NEXTERONE (amiodarone HCl) Premixed Injection is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fbrillation (VF) and hemodynamically unstable ventricular tachycardia (VT) in patients refractory to other therapy. NEXTERONE also can be used to treat patients with VT/VF for whom oral amiodarone is indicated, but who are unable to take oral medication. During or after treatment with NEXTERONE, patients may be transferred to oral amiodarone therapy. Use NEXTERONE for acute treatment until the patient's ventricular arrhythmias are stabilized. Most patients will require this therapy for 48 to 96 hours, but NEXTERONE may be safely administered for longer periods if necessary. Important Risk Information NEXTERONE (amiodarone HCl) Premixed Injection is contraindicated in patients with: • Known hypersensitivity to any of the components of NEXTERONE, including iodine • Cardiogenic shock • Marked sinus bradycardia • Second- or third-degree atrio-ventricular (AV) block unless a functioning pacemaker is available • NEXTERONE should be administered only by physicians who are experienced in the treatment of life-threatening arrhythmias, who are thoroughly familiar with the risks and benefts of amiodarone therapy, and who have access to facilities adequate for monitoring the effectiveness and side effects of treatment. • Hypotension is the most common adverse reaction seen with intravenous amiodarone. In clinical trials, treatment-emergent, drug-related hypotension was reported in 16% (288/1836) of patients treated with intravenous amiodarone. Clinically signifcant hypotension during infusions was seen most often in the frst several hours of treatment and appeared to be related to the rate of infusion. Monitor the initial rate of infusion closely and do not exceed the recommended rate. In some cases, hypotension may be refractory and result in a fatal outcome. Treat hypotension initially by slowing the infusion; additional standard therapy may be needed, including: vasopressors, positive inotropic agents and volume expansion. • In 4.9% (90/1836) of patients in clinical trials, drug-related bradycardia that was not dose-related occurred while patients were receiving intravenous amiodarone for life-threatening VT/VF. Treat bradycardia by slowing the infusion rate or discontinuing NEXTERONE. Treat patients with a known predisposition to bradycardia or AV block with NEXTERONE in a setting where a temporary pacemaker is available. • Elevations of blood hepatic enzyme values ALT, AST, GGT are commonly seen in patients with immediately life-threatening VT/VF. In patients with life-threatening arrhythmias, the potential risk of hepatic injury should be weighed against the potential beneft of NEXTERONE therapy. Carefully monitor patients receiving NEXTERONE for evidence of progressive hepatic injury. In such cases, consider reducing the rate of administration or withdrawing NEXTERONE. • Like all antiarrhythmics, NEXTERONE may cause worsening of existing arrhythmias or precipitate a new arrhythmia. Monitor patients for QTc prolongation during infusion with NEXTERONE. Reserve the combination of amiodarone with other antiarrhythmic therapies that prolong the QTc to patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent. • There have been postmarketing reports of acute-onset (days to weeks) pulmonary injury in patients treated with intravenous amiodarone. Findings included pulmonary infltrates and masses on X-ray, bronchospasm, wheezing, fever, dyspnea, cough, hemoptysis, and hypoxia. Some cases have progressed to respiratory failure or death. Two percent (2%) of patients were reported to have acute respiratory distress syndrome (ARDS) during clinical studies involving 48 hours of therapy. Pulmonary toxicity including pulmonary fbrosis is a well-recognized complication of long-term amiodarone use. • Amiodarone inhibits peripheral conversion of thyroxine (T4) to triiodothyronine (T3) and may cause increased T4 levels, decreased T3 levels, and increased levels of inactive reverse T3 (rT3) in clinically euthyroid patients. Amiodarone can cause either hypothyroidism or hyperthyroidism. Evaluate thyroid function prior to treatment and periodically thereafter, particularly in elderly patients, and in any patient with a history of thyroid nodules, goiter, or other thyroid dysfunction. Because of the slow elimination of amiodarone and its metabolites, high plasma iodide levels, altered thyroid function, and abnormal thyroid function tests may persist for several weeks or even months following NEXTERONE withdrawal. • The most important adverse reactions were hypotension, asystole/cardiac arrest/pulseless electrical activity (PEA), cardiogenic shock, congestive heart failure, bradycardia, liver function test abnormalities, VT, and AV block. The most common adverse reactions leading to discontinuation of intravenous amiodarone therapy were hypotension (1.6%), asystole/cardiac arrest/PEA (1.2%), VT (1.1%), and cardiogenic shock (1%). • Drug Interactions • Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone. • Amiodarone inhibits p-glycoprotein and certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A. This inhibition can result in unexpectedly high plasma levels of other drugs which are metabolized by those CYP450 enzymes or are substrates for p-glycoprotein. HMG-CoA reductase inhibitors that are CYP3A4 substrates in combination with amiodarone have been associated with reports of myopathy/rhabdomyolysis. Limit the dose of simvastatin in patients on amiodarone to 20 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A4 substrates (e.g., atorvastatin) may be required. • Some drugs/substances are known to accelerate the metabolism of amiodarone by stimulating the synthesis of CYP3A (enzyme induction). This may lead to low amiodarone serum levels and potential decrease in effcacy. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fuoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Please see brief summary of Full Prescribing Information on the following pages. Baxter Healthcare Corporation Deerfeld, IL 60015 For product information, contact Baxter at 888-229-0001.

Articles in this issue

Links on this page

Archives of this issue

view archives of EMS World - DEC 2014